Non-invasive Prenatal Test as Primary Screening for Down Syndrome

Tsz-Kin LO MBBS, MRCOG, FHKOOG
Department of Obstetrics and Gynaecology, Princess Margaret Hospital, Hong Kong

The performance of non-invasive prenatal testing (NIPT) is superior to that of current Down screening methods in both high- and low-risk pregnancies. On the other hand, concern over loss of benefits from current screening strategy for Down syndrome after its replacement by NIPT is not substantiated. The ethical principles of equity and reproductive autonomy also favour NIPT for universal screening. A preliminary analysis showed that the current Down screening strategies in the Hospital Authority could be replaced by NIPT without increasing the expense per case of trisomy 21 diagnosed from a societal perspective. In fact, the use of NIPT as a primary screening test for all pregnant women has been endorsed by the International Society of Prenatal Diagnosis.

Hong Kong J Gynaecol Obstet Midwifery 2016; 16(2):137-41

Keywords: Down syndrome; Prenatal diagnosis

Introduction

Non-invasive prenatal testing (NIPT) can be used as a first-tier screening test or a second-tier test for cases screened positive using conventional screening methods. There are three main concerns using NIPT as a universal first-tier test: (1) the test performance in a low- or mixed-risk obstetric population; (2) potential loss of other benefits offered by the current Down screening programme; and (3) the relatively high cost of NIPT.

Test Performance in the General Obstetric Population

NIPT has an excellent performance in a routine obstetric population. Since the first study in low-risk women in 2012, there have been at least 13 large studies, each with more than 1000 women, on the performance of NIPT for Down syndrome screening in a low-risk obstetric population. The total number of women studied exceeds 123,000. All studies showed that the rate of indeterminate results is extremely low (1.2-4.8% on first sample and 0.0-1.9% after redraw). The detection rate is >99.9%, comparable with that in the high-risk group. The false-positive rate was ≤0.3%, comparable with that in the high-risk group, and much lower than that of current screening strategies (false-positive rate, 4%)1-13. The positive predictive value ranges from 46% to 91%, again many fold higher than that of current methods (positive predictive value, 4.2%)1-13. It is no longer justifiable to offer pregnant women a test that has a poor positive predictive value and a high false-positive rate14.

Loss of Other Benefits of Current Down Screening Programme

The current Down screening programme sometimes detects other unrelated chromosomal abnormalities. Some are worried that these may be missed by targeted NIPT. Nonetheless, these conditions do not fulfil the criteria for screening. Many of them are randomly distributed and are not more common with a positive Down screening result. They are picked up simply due to the higher false-positive rate of the current Down screening programme and therefore more invasive diagnostic procedures are performed. It is the downside, and not an additional benefit, of current Down screening methods.

Atypical autosomal aneuploidies are rare after 12 weeks because they are lethal beyond the first trimester. Why bother then? The phenotypes of sex chromosome abnormalities and other autosomal aberrations are variable, usually mild. Findings of unclear significance sometimes arise secondary to a false-positive Down screening result. These conditions cause complex counselling issues, especially in the absence of ultrasound abnormalities. They unnecessarily overload the highly sought genetic counselling service. There are significant ethical issues as well. Adequate pretest counselling is impossible given the

Correspondence to: Dr Tsz-Kin Lo
Email: a9401438@graduate.hku.hk
multitude of possibilities associated with a false-positive Down screening result. It poses potential psychological harm to the woman due to unpreparedness, anxiety, and shock. Knowing more is not necessarily a blessing. To avoid this pitfall, the UK National Screening Committee has wisely recommended qualitative fluorescent polymerase chain reaction confirmation of a positive Down screening result15.

Coupled with maternal characteristics, blood pressure, and uterine artery Doppler, the current Down screening programme has the potential to predict development of pre-eclampsia and small babies. Nonetheless, the need for multiple markers means individual markers are not good enough. Replacing the current programme with NIPT, only the biochemical markers are lost. This is acceptable since biochemistry is not a good marker.

Ultimately, nothing is missed switching to targeted NIPT and it helps to alleviate the problems caused by the much higher false-positive rate of current screening methods. Nonetheless, NIPT is not a substitute for quality prenatal ultrasound, instead the two are complementary.

Cost

Two recent studies from the US examined the cost of replacing current screening strategies with NIPT from a societal perspective, i.e. taking into consideration the lifetime cost of the birth of an affected child. In one16, if NIPT cost was ≤US$744, conventional Down screening strategies could be replaced by NIPT without increasing the total health care expenditure. NIPT in this analysis reported trisomies 13 and 18 and Turner’s syndrome, as well as trisomy 21. Another study17 showed that if NIPT cost was ≤US$665, first trimester screening (FTS) could be replaced by NIPT without increasing the societal cost per trisomy case diagnosed. If NIPT cost was ≤US$543, then FTS could be replaced without an increase in total cost. In this study, NIPT reported trisomies 13 and 18 as well as trisomy 21. To date, no cost-effective analysis can address the psychological and non-monetary benefits of NIPT.

A preliminary analysis was carried out to assess the differential performance and cost-effectiveness of replacing the current Down screening strategy in the Hospital Authority with NIPT. The unit NIPT cost per case of trisomy 21 diagnosed was reported to be no higher than that of the current Down screening programme. The cost from a societal perspective is calculated by taking into account the lifetime cost of the birth of an affected child, and includes the difference in direct medical and educational costs between a Down syndrome child and an average individual in addition to the indirect costs of lost productivity due to morbidity and mortality associated with Down's. NIPT outperforms the current screening strategy (Table 118,19). When NIPT charge was US$160-300 (a range reported taking into account the variation in lifetime cost estimate of an affected child), the expense per case of trisomy 21 diagnosed was not increased (Table 216,18,20).

The market price of NIPT has already reduced to US$300 and was lower in 201421,22. It was recognised that, in Hong Kong, the test could be offered at <HK$2000 (US$250) with the provider already making a good profit. These providers and their intermediates (such as private doctors and hospitals) are making a huge profit by offering the test at HK$800023. One major NIPT provider from China has conceded that profit was made by offering NIPT at around US$160 (personal communication). Therefore, replacing current screening strategies with NIPT at no additional cost is economically feasible.

Further fall in NIPT cost is expected for good reasons. The principal reason is advances in technology. Chromosome-selective sequencing, semiconductor sequencing, and microarray-based analysis all have good potential to reduce costs compared with massively parallel sequencing. Revolutionary third-generation sequencing, or nano-sequencing will soon be available. The second reason is the economics of scale attributed to increasing uptake of NIPT. The third reason is price negotiation with government participation, through incentive structure, regulations, and reimbursement policies. The fourth is competition. Today, there are at least 13 NIPT providers worldwide. Three more are forthcoming in the US. The competition is keen. Almost all NIPT providers in the US are embattled in lawsuits over enforcement and infringement of patents. In a recent case, the court invalidated the “540 patent” and denied Sequenom’s request for an injunction against Ariosa Diagnostics (San Jose, California)24. Nonetheless, even if not invalidated, the “540 patent” will expire by 2017, paving the way for further reductions in NIPT cost.

Ethical Considerations

From an ethical point of view, there are also strong grounds for NIPT for all (equity of access) and not just for a select few. If NIPT is an important and beneficial technology, it should be available to all patients25. When NIPT is used as a second-tier test, the risk cut-offs to define high-risk groups eligible for NIPT differ widely in different studies. The eligibility for NIPT as a secondary test is
subject to manipulation. This has raised significant ethical concerns.

In a civilised society, free choice is highly valued. If the government is unable to or hesitates to offer the benefit of NIPT for all, a publically funded coupon will be a much better choice than a centralised service offering an inferior/less optimal test²³.

Acceptance of Universal Non-invasive Prenatal Test

We are not alone in the pursuit for NIPT for all. In a recent survey of members of the American College of Obstetricians and Gynecologists (ACOG), the majority (79.1%) were of the view that NIPT should be offered to all patients, similar to current Down syndrome serum and ultrasound screening²⁶. In the Netherlands, replacement of FTS by NIPT is favoured by 72% of health care professionals. The majority found NIPT easier to explain to patients than conventional screening²⁷.

Endorsement by Major Professional Bodies

In 2015, the ACOG and International Society of Prenatal Diagnosis (ISPD) revised their guidelines to keep up with the rapid developments in the field. The ACOG, in conjunction with the Society for Maternal-Fetal Medicine in the US, stated that any patient may choose NIPT as a screening strategy for common aneuploidies regardless of her risk status²⁸. In 2015, the ISPD also considered it appropriate to offer NIPT as a primary test to all pregnant women²⁹. The European Society of Human Genetics and American Society of Human Genetics also released their joint statement in 2015 in support of universal NIPT³⁰.

Table 1. Clinical performance of non-invasive prenatal test as first-tier test versus that of current screening strategy in the Hospital Authority (assuming 50,000 deliveries/year)

<table>
<thead>
<tr>
<th>Clinical performance</th>
<th>First-tier non-invasive prenatal test</th>
<th>Current screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection rate¹⁸</td>
<td>99%</td>
<td>93%</td>
</tr>
<tr>
<td>False-positive rate¹⁸</td>
<td>0.3%</td>
<td>5%</td>
</tr>
<tr>
<td>No. of trisomy 21 fetus/year¹⁹</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td>Screening positive</td>
<td>116</td>
<td>109</td>
</tr>
<tr>
<td>No. of invasive tests*</td>
<td>266</td>
<td>2603</td>
</tr>
<tr>
<td>Procedure-related loss¹⁹</td>
<td>2</td>
<td>23</td>
</tr>
</tbody>
</table>

* No. of invasive tests = ([Total No. of annual deliveries (assumed 50,000) – No. of trisomy 21 fetus/year] x false-positive rate) + No. of screen-positive cases

Table 2. Cost analysis

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit cost (HK$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum assay</td>
<td>220</td>
</tr>
<tr>
<td>Invasive procedure</td>
<td>1900</td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>900</td>
</tr>
<tr>
<td>Karyotyping</td>
<td>1600</td>
</tr>
<tr>
<td>Human capital</td>
<td>54,350</td>
</tr>
<tr>
<td>Ultrasound machine</td>
<td>0.8 million</td>
</tr>
<tr>
<td>Lifetime cost of affected child¹⁶,²⁰</td>
<td>5.3-11.7 million</td>
</tr>
<tr>
<td>Non-invasive prenatal test cost to keep expense per case of trisomy 21 diagnosed constant from a societal perspective§</td>
<td>1250-2340 (US$160-300)</td>
</tr>
</tbody>
</table>

* Data from Tsan Yuk Hospital Prenatal Diagnosis Laboratory
† Mean monthly salary of specialist midwife responsible for nuchal translucency scanning and pretest counselling (salary quoted from Hospital Authority vacancy for advanced practice nurse)
‡ Philips IU22 ultrasound machine
§ First-trimester ultrasound for nuchal translucency is retained after implementing universal non-invasive prenatal test

of FTS by NIPT is favoured by 72% of health care professionals. The majority found NIPT easier to explain to patients than conventional screening²⁷.

Endorsement by Major Professional Bodies

In 2015, the ACOG and International Society of Prenatal Diagnosis (ISPD) revised their guidelines to keep up with the rapid developments in the field. The ACOG, in conjunction with the Society for Maternal-Fetal Medicine in the US, stated that any patient may choose NIPT as a screening strategy for common aneuploidies regardless of her risk status²⁸. In 2015, the ISPD also considered it appropriate to offer NIPT as a primary test to all pregnant women²⁹. The European Society of Human Genetics and American Society of Human Genetics also released their joint statement in 2015 in support of universal NIPT³⁰.
Conclusion

NIPT has superior efficacy to conventional screening for all pregnant women. The replacement of the current Down screening strategy with universal NIPT can potentially be achieved without adding to the overall cost from a societal perspective. The next question will be how to maximise its benefits to pregnant women in the local setting.

Declaration

The author has disclosed no conflicts of interest.

References

