
Review Article

114
© 2019 Obstetrical & Gynaecological Society of Hong Kong and Hong Kong Midwives Association. CC BY-NC-ND 4.0

Hong Kong J Gynaecol Obstet Midwifery 2019;19(2):114-22 | https://doi.org/10.12809/hkjgom.19.2.08

Correspondence to: Anita Sik Yau KAN
Email: kansya@hku.hk

Development of cytogenomics for prenatal 
diagnosis: from chromosomes to single 
nucleotides: a review

Kelvin Yuen Kwong CHAN1,2 PhD
Sandy Leung Kuen AU1,3 PhD
Anita Sik Yau KAN1,2 MBBS, MRCOG, FHKAM (O&G)
1 Prenatal Diagnostic Laboratory, Tsan Yuk Hospital
2 Department of Obstetrics and Gynaecology, Queen Mary Hospital
3 Department of Obstetrics and Gynaecology, The University of Hong Kong

Prenatal diagnosis encompasses traditional cytogenetics and molecular-based techniques. In the new era of 
genomics, challenge to prenatal diagnosis has led to revised diagnostic strategies. In this review, we discuss the 
application of chromosomal microarray and a new prenatal diagnosis workflow in the public setting in Hong Kong. 
Using this prenatal diagnosis workflow, up to 40% of fetuses with structural anomalies can be identified with an 
underlying genetic aetiology, leaving the majority of cases undiagnosed. With the advancement of next generation 
sequencing, we are able to tackle the challenge of investigating chromosomal changes to single nucleotide variant 
level. Therefore, we also discuss whole exome sequencing, whole genome sequencing, and long-read sequencing, 
as well as their limitations and prenatal applications. This DNA-based technology should be evaluated for prenatal 
clinical application in Hong Kong.

Keywords: Prenatal diagnosis; Whole exome sequencing; Whole genome sequencing

Introduction
 Conventional G-banded karyotyping with a 
resolution of 5 to 10 Mb was the gold standard for detecting 
numerical and structural chromosomal abnormalities in 
prenatal diagnosis. It has a turnaround time of about 2 weeks, 
because it requires cell culture, metaphase preparation, and 
karyotyping by trained cytogeneticists. It is therefore mostly 
superseded by chromosomal microarray (CMA), which 
can examine DNA copy number variations (CNVs) at an 
increased resolution and detect microdeletion and micro-
duplication on top of gross chromosomal imbalances. 
CMA can achieve higher diagnostic yield in both prenatal 
and postnatal settings. Since June 2019, CMA has been 
the first-line test for prenatal diagnosis in public hospitals 
in Hong Kong. Nonetheless, advancement in genomic 
analysis by next generation sequencing (NGS) [also known 
as massively parallel sequencing] and challenge to prenatal 
diagnosis have led to revised diagnostic strategies.

 A definitive cytogenomic and genetic prenatal 
diagnosis by conventional cytogenetics and molecular-
based techniques (including CMA and NGS) enables 
more informed choices and counselling of parents 
regarding prognosis, and hence empower parents in 
making pregnancy decisions. It provides reassurance 
of continuation of the pregnancy when the prognosis is 

good, and an option of termination of pregnancy when the 
prognosis is poor. Accurate and rapid cytogenomic and 
genetic diagnosis facilitates targeted in utero treatment and 
postnatal management, informs reproductive risk of future 
pregnancy, and has implications for other family members. 
In this review, we discuss the application of CMA, whole 
exome sequencing (WES), and whole genome sequencing 
(WGS) in prenatal diagnosis (Table).

Prenatal diagnosis workflow with 
CMA
 CMA detects gain and loss of genomic regions 
by hybridization of fluorescently labelled test DNA from 
a patient (fetal sample) onto probe targets with known 
genomic coordinates, which are usually fixed on a glass 
slide. Depending on the type of CMA platform, there are 
oligonucleotide probes, single-nucleotide-polymorphism 
(SNP) probes, and a combination of two for detecting 
chromosomal abnormalities. Both oligonucleotide-based 
CMA and SNP-based CMA can determine CNVs, but only 
the latter can genotype SNPs on DNA target. The genotype 
information of the SNPs enables detection of maternal 
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cell contamination in the fetal sample, triploidy, and copy 
number neutral changes, namely absence of heterozygosity, 
uniparental isodisomy, and segmental iso/heterodisomy.

 The limitations of CMA include inability to detect 
balanced structural rearrangement of chromosomes, low 
level mosaicism (sensitivity level is platform specific and 
ranges from 20% to 30%), polyploidy (except for triploidy 
by SNP-based CMA), CNVs not represented on the array 
design (such as supernumerary marker chromosomes 
that are of centromeric and heterochromatic origin where 
no probe can be designed from these repetitive sequence 
regions), and uniparental heterodisomy (unless trio 
analysis of SNP-based CMA is performed). Chorionic 
villus specimens with abnormal or mosaic findings should 
be interpreted with caution as there is a possibility of 
confined placental mosaicism, which should be excluded 
by confirmatory testing on amniotic fluid sample.

 Chromosomal imbalances may suggest structural 
rearrangement. Unbalanced translocations can usually be 
inferred from having terminal deletion of one chromosome 
together with terminal duplication of another chromosome. 
Unbalanced translocations can be confirmed by karyotyping 
and/or fluorescence in-situ hybridization. Both of which 
are valuable tools and cannot be replaced by CMA alone 
in the study of structural chromosomal imbalances such as 
ring chromosome, marker chromosomes, isochromosomes, 
isodicentric chromosomes, and unbalanced translocations. 

Their corresponding quantitative gain or loss of 
chromosomal DNA can only be reflected in CMA results.

 CMA is commonly used (in place of karyotyping) 
for prenatal diagnosis as supported by major professional 
societies in different countries1-5. Systematic reviews have 
shown an increased diagnostic yield of CMA of 3.5% to 
10% for fetuses with ultrasound abnormality and normal 
karyotype, while the detection of variants of uncertain 
clinical significance remains low at around 1% to 2%6-9. 
Studies have demonstrated the clinical utilities of CMA10,11, 
supporting its use as an adjunct diagnostic tool in prenatal 
cases with fetal ultrasound abnormalities12-14. It has been 
shown to be a cost-effective diagnostic test in pregnancies 
with fetal ultrasound anomalies15,16. A multicentre study in 
UK on array comparative genomic hybridisation in prenatal 
diagnosis of fetal anomalies concluded that CMA was a 
robust, acceptable, and probably cost-effective method to 
detect more clinically significant chromosomal imbalances 
in anomalous fetuses17. In Hong Kong, CMA has been 
accepted as a part of prenatal diagnosis to improve the 
prenatal care18-21 and to investigate the underlying causes 
of fetal abnormalities7, 22-33 that cannot be achieved by 
conventional cytogenetics alone.

 Since June 2019, a new prenatal diagnostic 
workflow has been implemented in public hospitals in 
Hong Kong (Figure 1). It integrates CMA as a first-line test 
with quantitative fluorescent polymerase chain reaction 

Table. Comparison of cytogenomic technologies

Molecular 
technology

Resolution Detection of 
chromosomal 
change

Run time 
(turnaround 
time)

Throughput per test Prenatal use in Hong 
Kong

Chromosomal 
microarray 

100-200 kb Copy number 
variants

2-3 days (7 
working days)

1-8 samples per chip (depending 
on platform)

Yes

Whole exome 
sequencing

1 bp Variants in exon 3-4 days (3-4 
weeks)

6-12 samples (depending on the 
read-depth and gene coverage) 
per run on a medium throughput 
by next generation sequencing 
platform 

Yes

Whole genome 
sequencing 
(low-coverage)

50-100 kb Copy number 
variants

2-3 days (7 
working days)

16-48 samples (depending on the 
read-depth and coverage) per run 
on a medium throughout by next 
generation sequencing platform

Yes

Long-reads 
sequencing 

~10 bp 
accuracy

Structural variants 
and breakpoint 
mapping

Hours to 2 days 
(unknown)

Various (depending on purpose 
and region of interest)

No (yes for 
preimplantation 
genetic testing on 
chromosomal structural 
rearrangement)
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(QF-PCR) for rapid common aneuploidies detection and 
conventional G-banded karyotyping. It is offered free to 
pregnant women with positive Down syndrome screening 
(including positive non-invasive prenatal test), fetal 
nuchal translucency ≥3.5 mm, structural abnormalities 
detected on ultrasound examination, and family history of 
chromosomal or genetic disorder. This workflow is also 
offered to women with second trimester miscarriage and 
stillbirth. These tests are performed by two accredited 
laboratories: the Prenatal Diagnostic Laboratory at Tsan 
Yuk Hospital using the Affymetrix CytoScan 750k SNP 
array and the Prenatal Genetic Diagnosis Centre at the 
Chinese University of Hong Kong using Fetal DNA Chip. 
Genetic counselling support is provided by the two clinical 
teams for complicated cases.

 Regarding the new workflow, DNA extracted from 

fetal sample is subjected to rapid aneuploidies detection by 
QF-PCR while backup cell culture is set up. If QF-PCR 
shows normal results, CMA is performed. If QF-PCR 
shows abnormal results (trisomy 13, 18, 21, monosomy 
X, and triploidy), conventional karyotyping is performed. 
For samples with QF-PCR results showing XXX, XXY, 
and XYY, both CMA and conventional karyotyping are 
performed, as sex chromosome aneuploidy is unlikely to 
explain the ultrasound anomaly. CMA is performed using 
cultured or uncultured cells to rule out submicroscopic 
CNVs for samples with inconclusive QF-PCR that 
subsequently shows normal karyotyping results. In fetal 
samples with maternal cell contamination or inadequate 
amount of extracted DNA, CMA is performed on cultured 
cells after QF-PCR testing. Parental CMA is performed to 
clarify the inheritance of the CNVs detected in the fetal 
sample as indicated. G-banded karyotyping is performed 

Figure 1. Workflow of chromosomal microarray (CMA) as a first-line test in prenatal diagnosis. Abnormal quantitative fluorescent 
polymerase chain reaction (QF-PCR) results include trisomies 13, 18, and 21, monosomy X, and triploidy. Inconclusive QF-PCR 
results indicate unable to conclude normal number of chromosomes 13, 18, 21 and inconclusive result for sex chromosomes. 
Dotted arrows indicate workflow for samples with inconclusive QF-PCR results. 
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for cases with abnormal CMA to confirm the structural 
rearrangement and to inform future reproductive risk. 
Further testing such as uniparental disomy testing by short 
tandem repeat markers to rule out heterodisomy is arranged 
after discussion with referring doctor if it is clinically 
indicated.

 For CNV interpretation, a 3-tier classification 
(benign, uncertain clinical significance, and pathogenic) 
is generally adopted in our laboratory instead of 5-tier 
(benign, likely benign, uncertain clinical significance, likely 
pathogenic, and pathogenic), as suggested by the American 
College of Medical Genetics and Genomics guideline34. It 
does not affect pathogenic variant classification and impact 
on the diagnostic yield7. Interpretation of CNV is more 
challenging in the prenatal setting than in the postnatal 
setting, because of the limited phenotype information 
from ultrasound examination. The clinical significance 
of CNV depends on its size, gene content, evidence on 
haploinsufficiency or triplosensitivity, inheritance of the 
CNV, any previous reports, and relevance between the 
disrupted gene and phenotype. In general, whole genome 
CMA enables detection of CNV at size of 100-200 kb 
on the backbone and at smaller sizes on disease-focused 
regions.

 In accordance to the Royal College of Pathologists 
2015 recommendation35, certain low penetrance neuro-
susceptibility CNVs are not reported in the public hospital 
setting, including proximal 1q21.1 duplications (overlapping 
RBMBA gene), 15q11.2 BP1-BP2 deletions or duplications 
(overlapping NIPA1 gene), 15q13.1q13.3 duplications, 
16p13.11 deletions or duplications (overlapping MYH11 
gene), 16p12.2 deletions (overlapping CDR2 gene), 
Xp22.31 duplications (overlapping STS gene), and 
Xp22.33 deletions (overlapping SHOX gene). They have 
no strong evidence of linking to potential phenotypes on 
the basis of genes involved for the pregnancy (future child) 
or have no clinically actionable consequence for that child 
or family in the future. 

Next generation sequencing for 
CNV analysis
 NGS enables analysis of nucleotides variation (using 
WES) and study of CNVs36. Compared with hybridisation 
technology in CMA, NGS generates sequencing reads that 
are mapped on chromosomes and quantitatively counted 
and segmented into region of an equal copy number. These 
features of NGS are used to developed low-pass (or low-
coverage) WGS for CNV analysis. The degree of read 
depth of this low-pass WGS is approximately an average of 

0.25× to 1× with respect to the whole human genome37-39, 
meaning that a given nucleotide in a human genome is 
read once or less than that of an average, as not the whole 
genome is covered and sequenced. Low-pass WGS is most 
beneficial in terms of cost per sample, turnaround time, and 
sensitivity and resolution in CNV detection. Depending on 
the workflow, 6 to 28 million single end reads of 35 to 51 bp 
generated from each sample suffice for CNV analysis36,37,40. 
Such NGS-based analysis for CNV detection is referred 
to as CNV-seq36,41 or low-pass (or low-coverage) WGS/
NGS37,40.

 The main advantage of NGS-based CNV analysis 
is the ability to adjust platform resolution by in silico 
manipulation of window size, which can be performed in 
data processing. This is not possible for CMA platform as 
its genomic resolution is fixed by the probe density and 
coordinate although the number of probes and the size 
of CNV can be defined in data analysis. The NGS-based 
method can adjust the resolution by altering the number 
of samples processed within the batch: fewer samples in a 
batch increase read-count per sample, hence increasing the 
resolution of imbalances to be detected. The NGS-based 
method requires relatively low amount of starting genetic 
material of 100 to 200 ng36,37, depending on the sequencing 
platform and protocol. Low-pass NGS-based CNV analysis 
shares some of the limitations of CMA. It cannot detect 
polyploidy (except for 69,XXY)40 and balanced structural 
rearrangement, unless by increasing sequencing read-
depth, which in turn increases the cost per sample. At 
this low level of read-depth, it cannot detect uniparental 
disomy, compared with SNP-based CMA. In order to be 
cost-efficient, samples multiplexing (≥20 samples) is 
necessary.

 Interpretation of CNV detected by low-pass NGS 
follows the same rules for CMA. Low-pass NGS is a 
reliable and robust alternative for CNV analysis with 
shorter turnaround time, higher resolution, capable of 
detecting lower level of mosaicism (by scaling up the 
sequencing depth), and improved detection of CNV, 
compared with CMA. Its clinical utility in prenatal setting 
has been demonstrated in prospective studies36,42-44. A 
large-scale prospective study in Mainland China involving 
3429 women with amniocentesis reported detection of 
2.83% pathogenic/likely pathogenic CNV, and 1.43% 
of variants of uncertain significance43. This led to expert 
recommendation in Mainland China to offer CNV-
sequencing as first-line test for prenatal diagnosis under a 
confined context45. As large population scale projects such 
as the 100 K Genome Project are being conducted, more 
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data will be generated for NGS-based CNV interpretation, 
and hence NGS-based CNV analysis is likely to become a 
first-line test for prenatal diagnosis in the near future.

Whole exome sequencing
 The human genome consists of about 3 billion 
base-pairs, and only 1% to 2% of DNA sequences encode 
for protein. Exomes refer to genome regions that contain 
exons, and it is estimated that 85% to 90% of all disease-
causing mutations reside in the exome. WES is a type of 
NGS that focuses on gene exons. Basic workflow of WES 
starting from DNA extraction and library preparation to 
massively parallel sequencing on a sequencing instrument 
can be accomplished in <3-4 days. It is then followed 
by bioinformatics analysis of sequencing data, result 
interpretation, literature search, and if necessary, final result 
verification and inheritance analysis (when trio WES is not 
performed) using Sanger DNA sequencing. At the moment, 
the turnaround time of WES for prenatal diagnosis is around 
3-4 weeks. In brief, DNA is extracted and fragmented into 
shorter pieces (200-400 bp) and ligated with adaptors for 
clonal amplification during sequencing reaction. To select 
and enrich for exonic regions, capture probes (short oligos 
that can hybridise to target DNA) are used. In commercially 
available exome capture kit, the total number of capture 

probes range from a few hundred thousands to millions 
to ensure broad and specific coverage of the exome. Once 
the target DNA is enriched and amplified, it becomes the 
‘library’ for subsequent massively parallel sequencing to 
produce millions of short sequencing reads. For WES, 
an average of 100× read depth for proband or a lower 
threshold of average read depth of 70× for trios analysis is 
reliable to detect the single nucleotide change46. If a lower 
depth of coverage is obtained, Sanger sequencing should 
be performed for confirmation.

 In prenatal diagnosis, trio WES (of parents and fetus) 
enables different inheritance analysis models, including de 
novo, autosomal recessive, autosomal dominant, X-linked 
recessive inheritance, mitochondrial, and imprinted gene 
variations (Figure 2). Advantages of trio WES with respect 
to the efficiency of variant detection and interpretation have 
been reported47-49. Targeted analysis of a gene panel is also 
plausible for a genetically heterogeneous condition with a 
clear clinical diagnosis. It has the advantage of focusing 
on known variants and genes related to the disease of 
interest, such as Noonan syndrome and skeletal dysplasia. 
Disease panels usually cover several to tens of genes; thus, 
the sequencing cost and result interpretation are not as 
demanding as WES50.

Figure 2. Advances in DNA-based technology in enhancing prenatal molecular diagnosis
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 Interpretation of WES findings varies among 
different laboratories and relies on multidisciplinary 
expertise from clinical scientist, geneticist, and clinicians. 
Classification of variants is based on the American College 
of Medical Genetics guidelines51, and interpretation of 
the variant is highly evidence-based with reference to the 
literature, database, and matching clinical phenotypes. 
Challenges remain in understanding and reporting variants 
of uncertain clinical significance in the prenatal setting.

 WES is mainly applied for prenatal diagnosis 
of monogenic disorders in fetuses with structural 
abnormalities. The PAGE study52 in the UK analysing 
610 trios reported an increased diagnostic yield of 8.5% 
of pathogenic variants and an additional 3.9% variants 
of uncertain significance that have potential clinical 
usefulness after exclusion of aneuploidy and large CNVs. 
Fetuses with multisystem or skeletal anomalies had the 
highest diagnostic yield of 15.4%. A study in US examining 
234 consecutive fetuses using a similar approach reported 
diagnostic variants in overall 10.3% of fetuses53. Fetuses 
with multiorgan system involvement, skeletal, lymphatic 
or effusion, central nervous system, and renal anomalies 
had the highest diagnostic yield of 16% to 24%. Our recent 
study showed that WES could identify pathogenic variants 
in 9.1% and variants of uncertain clinical significance in 
18.2% of fetuses with structural congenital anomalies that 
showed normal results in CMA and karyotyping54. The 
diagnostic yield for pathogenic variants in our study was 
consistent with that in the above studies52,53.

 However, there are limitations to its routine 
application, including requirement of rapid pipeline 
for analysis and a multidisciplinary team for timely 
interpretation of results preferably before 24 weeks’ 
gestation, which is the legal limit of termination of 
pregnancy in Hong Kong. Other limitations include 
incomplete coverage of some genomic regions that 
are difficult to be enriched by the capture method 
and incomplete prenatal phenotyping by ultrasound 
examination alone as genotype-phenotype correlation can 
be weak. In addition, ethical issues include how to obtain 
adequate informed consent and reporting of incidental or 
secondary findings in parents’ or fetus. Trios analysis may 
reveal non-paternity and consanguinity. There is also a 
possibility of reclassification of variants necessitating re-
analysis or re-contact of patients. The position statement of 
the International Society of Prenatal Diagnosis states that 
diagnostic sequencing should best be offered for evaluation 
of fetuses under a research setting or in consultation with 

expert genetic professionals. Other points to consider 
include55: (1) trio approach is preferred for timeliness of 
result interpretation and pathogenicity assessment; (2) 
there is limited genotype-phenotype correlation in the fetal 
period and thus uncertainty on variant interpretation in the 
prenatal setting; and (3) involvement of a multidisciplinary 
team with expertise in both clinical and laboratory aspects 
for informed consent, pre and post-test counselling, and 
variant interpretation.

Whole genome sequencing for 
structural variant and chromosomal 
breakpoint discovery
 Large structural variants (up to mega base-pair 
level) such as deletion, insertion, balanced or unbalanced 
translocations are studied by CMA (or traditionally by 
karyotyping). However, CMA is not capable of identifying 
chromosomal breakpoint at the nucleotide level. Several 
techniques have been developed to map chromosome 
breakpoints to the kilo base-pair (kb) level56-62. However, 
these techniques are time-consuming, expensive, and do not 
provide enough information of the breakpoint-linked SNPs 
for haplotyping analysis63. The advent of third-generation 
long-read sequencing has improved the definition of 
structural variants and their breakpoints, and there is 
growing interest in exploring the landscape of structural 
variants in the germline of a large number of genomes64.

 Third-generation long-read sequencing, or single 
molecule sequencing, refers to sequencing a DNA 
molecule continuously up to 80 kb (Figure 2). By mapping 
the long sequencing reads to the reference genome, large 
chromosomal changes can be detected, and their precise 
locations can be pinpointed to determine if any genes are 
involved. In highly repetitive regions of the genomes or 
GC-rich loci, long-read sequencing is feasible with a low 
error rate. Popular long-read sequencing platforms include 
single-molecule real-time technology by Pacific Biosciences 
and Oxford Nanopore sequencing technologies65,66.

 There are reports on single-molecule real-time long-
read sequencing in detecting AGG interruptions in females 
with a FMR1 premutation for fragile X syndrome. The 
single-molecule real-time platform is the only technology 
so far that can separate the two repeats derived from 
different X-chromosomes, and hence is superior to PCR-
based assays67,68. Long-read sequencing by Nanopore 
sequencing technologies on preimplantation genetic testing 
on chromosomal structural rearrangement can distinguish 
the balanced reciprocal translocation carrier embryos from 
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