Single, double, and triple modalities of uterinesparing treatment for primary postpartum haemorrhage: a 14-year retrospective cohort study

LT KWONG, MRCOG

PL SO, FRCOG FHKAM(OG) Cert HKCOH(MFM) MMedSc SF WONG, FRCOG FHKAM(OG) Cert HKCOH(MFM) Department of Obstetrics and Gynecology, Tuen Mun Hospital, Hong Kong SAR

Introduction: To evaluate the success rate and short-term complications of single, double, and triple modalities of uterine-sparing treatment (UST) for primary postpartum haemorrhage (PPH).

Methods: We retrospectively reviewed records of women who underwent UST for PPH between 2006 and 2019 in Tuen Mun Hospital. The success rates of single, double, and triple modalities of UST (derived from the number of haemostatic hysterectomies prevented) were compared, as were short-term complications between single and double modality groups.

Results: Of 221 women who underwent UST for primary PPH, 174 (78.7%) received single, 44 (19.9%) received double, and 3 (1.4%) received triple modalities of UST. The three groups were comparable, except that there were more nulliparous women in the double than single modality group, more women having caesarean sections in the single than double or triple modality group, and more uterine atony in the double or triple than single modality group. The success rate of haemostasis decreased from 94.3% after single modality to 90.9% after double modalities to 0% after triple modalities (p<0.001). All three women with triple modalities of UST eventually underwent haemostatic hysterectomy. The single and double modality groups were comparable in terms of short-term complications.

Conclusion: Single and double modalities of UST were effective and safe in treating primary PPH. Early resort to hysterectomy should be considered if double modalities of UST failed to achieve haemostasis.

Keywords: Hemostasis; Hysterectomy; Postpartum hemorrhage; Uterine haemorrhage

Introduction

Postpartum haemorrhage (PPH) is an important cause of maternal morbidity and mortality. It occurs in 5% of the deliveries and is classified as severe in 1% of cases^{1,2}. Primary PPH is defined as genital tract bleeding of \geq 500 mL within 24 hours of birth. When uterotonic drugs fail to stop haemorrhage, uterine-sparing treatments (UST) such as intrauterine balloon tamponade, uterine compression suture, pelvic artery ligation, and pelvic artery embolisation are indicated. None of the modalities is superior to the others3. There are no adverse effects of UST on menstruation and fertility outcomes⁴. When haemostasis is not achieved after a single modality of UST, use of the second modality is suggested⁵. Nevertheless, there is no evidence regarding the efficacy and potential complications of multiple UST. Devascularisation of the uterus can result in ischaemic events to the endometrium-myometrium interface. Uterine necrosis has been reported after uterine compression suture⁶⁻⁸, pelvic artery embolisation⁹, or a combination of compression suture and vascular ligation¹⁰, with fever and abdominal pain on the third day postpartum. Computed tomography shows the presence of gas bubbles in the myometrium. The present study aimed to determine the success rate of single, double, and triple modalities of UST in achieving haemostasis, and to compare the incidence of short-term complications between single and double modalities.

Methods

This retrospective study was approved by the New Territories West Cluster Ethics Committee (reference: NTWC/CREC/15039). Women who underwent UST in Tuen Mun Hospital from April 2006 to February 2019 were followed up at 6 weeks postpartum. Demographic, antenatal, and intrapartum data were retrieved. The success rate of single and multiple modalities of UST was derived from the number of hysterectomies prevented.

The surgical techniques and suture materials were standardised. Uterine compression suture (including B-Lynch suture and Hayman suture) were performed with No. 1 Monocryl. Cho suture and uterine artery

Correspondence to: Dr LT KWONG Email: lydiakwong1@yahoo.com.hk ligation (UAL) were performed with No. 1 Vicryl. Uterine artery embolisation was performed by radiologists in operating rooms or radiology suites. Bakri balloons (Bakri Postpartum Balloon, Cook Medical) were the preferred UST in women with uterine atony after vaginal deliveries. Sequence of UST was decided by the treating physician case by case. Failure of a modality was defined clinically by ongoing bleeding after 15 minutes. To minimise the risk of maternal sepsis, one week of empirical antibiotics (750 mg intravenous cefuroxime and 500 mg intravenous metronidazole) was prescribed.

Short-term complications of UST (within 6 weeks postpartum) were recorded, including secondary PPH (abnormal genital tract bleeding between 24 hours and up to 12 weeks postnatally¹¹), endometritis, puerperal sepsis (infection plus systemic manifestations developing after birth until 6 weeks postnatally¹²), pyometra, haematometra, uterine necrosis, and vessel complications (thrombosis, dissection, aneurysm, and pseudoaneurysm).

The amount of lochia, presence of abdominal pain, abnormal vaginal discharge or fever were recorded at postnatal 6 weeks. A routine gynaecological examination was performed. Genital swabs and blood tests were taken if infection was suspected. Ultrasonography of the pelvis was performed if there was abnormal vaginal bleeding. Women who lost to follow-up were contacted by phone, and appointments were offered for symptomatic cases.

Statistical analysis was performed using SPSS (Windows version 21; IBM Corp, Armonk [NY], US). Women in the three groups of modalities of UST were compared using the one-way ANOVA, Fisher's exact test, or Chi-squared test. Short-term complications between single and double modalities of UST were compared using the Chi-squared test or Fisher's exact test. A p value of <0.05 was considered statistically significant.

Results

Of 72 596 deliveries in our unit in the past 14 years, 221 (0.3%) women underwent UST for primary PPH. Among them, 174 (78.7%) received single, 44 (19.9%) received double, and 3 (1.4%) received triple modalities of UST. Eight (3.6%) women had a history of PPH. The amount of blood loss ranged from 500 mL to 12000 mL (median, 2400 mL). The commonest cause of PPH was uterine atony (42.5%). Regarding the mode of delivery, 198 (89.6%) women had caesarean sections, 20 (9.0%) had normal vaginal deliveries, and 3 (1.4%) had vacuum extractions. Women who underwent UST were comparable in terms of maternal, antepartum, and intrapartum characteristics, except that there were more nulliparous women in the double than single modality group, more women having caesarean sections in the single than double or triple modality group, and more uterine atony in the double or triple than single modality group (Table 1). The median blood loss increased from 2000 mL after single modality to 4800 mL after triple modalities, whereas the use of recombinant factor VIIa and blood products transfusion increased with the number of modalities performed (Table 1).

Of 174 women with single modality of UST, 162 (93.1%) delivered by caesarean sections, 9 (5.2%) vaginally, and 3 (1.7%) by vacuum extractions. UAL was most commonly performed (n=110, 63.2%), followed by compression suture (n=38, 21.8%) [Table 2]. Single modality of UST successfully achieved haemostasis in 164 (94.3%) women. The remaining 10 (5.8%) women failed to achieve haemostasis and necessitated hysterectomy despite having had UAL (n=5), uterine artery embolisation (n=3), or compression suture (n=2); the causes of PPH were uterine atony (n=6), morbid adherence of the placenta (n=2), placenta praevia (n=1), and vaginal haematoma extending into the broad ligament (n=1).

Of 44 women with double modality of UST, 34 (77.3%) delivered by caesarean sections and 10 (22.7%) vaginally. A combination of UAL and compression suture was most commonly performed (n=30, 68.2%) [Table 2]. Double modality of UST successfully achieved haemostasis in 40 (90.0%) women. The remaining 4 (9.1%) women failed to achieve haemostasis and necessitated hysterectomy despite having had UAL plus compression suture (n=3) or compression suture plus uterine artery embolisation (n=1); the causes of PPH were uterine atony (n=3) and placenta praevia (n=1).

In the three women with triple modality of UST for uterine atony, one underwent Bakri ballooning and then laparotomy for UAL and then compression suture, and two underwent Hayman's suture and then UAL and then traditional B-Lynch suture (Table 2). However, all these women failed to achieve haemostasis and necessitated hysterectomy.

The success rate of haemostasis decreased from 94.3% after single modality to 90.9% after double modalities to 0% after triple modalities (p<0.001, Table 2). The single and double modality groups were comparable in terms of short-term complications such as secondary PPH (4.0% vs

Characteristic	Single modality (n=174)*	Double modalities (n=44)*	Triple modalities (n=3)*	p Value
Age, y	34 (31.0-37.0)	32.5 (28.3-35.0)	31	0.08
Chinese	169 (97.1)	43 (97.7)	3 (100)	>0.99
Body mass index, kg/m ²	22.1 (20.6-24.7)	21.8 (20.4-24.8)	27.3	0.090
Nulliparity	71 (40.8)	28 (63.6)	1 (33.3)	0.014
Natural conception	144 (82.8)	34 (77.3)	3 (100)	0.666
Multiple pregnancy	23 (13.2)	6 (13.6)	0 (0)	>0.99
Previous caesarean section	48 (27.6)	8 (18.2)	2 (66.7)	0.124
History of postpartum haemorrhage	7 (4)	1 (2.3)	0 (0)	>0.99
Polyhydramnios	3 (1.7)	3 (6.8)	0 (0)	0.170
Fibroid ≥3 cm	9 (5.2)	3 (6.8)	0 (0)	0.756
History of antepartum haemorrhage	56 (32.2)	7 (15.9)	0 (0)	0.058
Gestation at delivery, weeks	39 (1)	38.5 (3)	38	0.10
Mode of delivery				0.004
Vaginal/instrumental delivery	12 (6.9)	10 (22.7)	1 (33.3)	
Caesarean section	162 (93.1)	34 (77.3)	2 (66.7)	
Intrapartum fever (≥38.5°C)	4 (2.3)	0 (0)	0 (0)	0.607
Induction of labour	26 (14.9)	13 (29.5)	0 (0)	0.066
Use of tranexamic acid	53 (30.5)	21 (47.7)	1 (33.3)	0.085
Use of recombinant factor VIIa	4 (2.3)	7 (15.9)	1 (33.3)	0.001
Blood products transfused, units				
No. of red blood cell	2 (3)	8 (6)	8	<0.001
No. of platelet	0 (18)	8 (5)	8	<0.001
No. of fresh frozen plasma	0 (4)	8 (7)	8	<0.001
Blood loss, mL	2000 (1300-3000)	3550 (2500-4875)	4800	<0.001
Birthweight, kg	2.92 (2.49-3.22)	2.85 (2.44-3.55)	3.30	0.630
Primary cause of postpartum haemorrhage				0.008
Uterine atony	76 (43.7)	30 (68.2)	3 (100)	
Placenta praevia/ morbidly adherent placenta	92 (52.9)	11 (25)	0 (0)	
Genital tract trauma	5 (2.9)	1 (2.3)	0 (0)	
Coagulopathy	1 (0.5)	2 (4.5)	0 (0)	

Table 1. Maternal, antepartum, and intrapartum characteristics of women who underwent single, double, or triple modalities of uterine-sparing treatment

* Data are presented as median (interquartile range) or No. (%) of women

9.1%), endometritis (1.7% vs 6.0%), haematometra (0% vs 2.3%), and vessel complications namely iliac artery dissection (0% vs 2.3%) [Table 3]. No patients developed pyometra, uterine necrosis, or ureteric injury.

Discussion

Uterine atony is the commonest cause of PPH¹³. In the present study, most women who underwent two modalities of UST were nulliparous, as obstetricians tried

to preserve the uterus in these women. The success rate of haemostasis by single and double modalities of UST was 94.3% and 90.0%, respectively, which are higher than the 84% to 91.7% after single modality of UST reported in a systematic review³. The combined use of B-Lynch suture and stepwise pelvic artery devascularisation prevented 80% of haemostatic hysterectomy¹⁴. However, the success rate dropped to 0% after triple modalities. UAL was the first UST performed in our centre and has been preferred

Modality	No. (%) of women	No. (%) of women avoided hysterectomy
Single modality	174 (78.7)	164 (94.3)
Uterine artery ligation	110 (63.2)	105
Compression suture	38 (21.8)	36
B-Lynch suture	14 (8.0)	-
Hayman's suture	24 (13.8)	-
Balloon tamponade	12 (6.9)	12
Uterine artery embolisation	14 (8.0)	11
Double modalities	44 (19.9)	40 (90.9)
Uterine artery ligation + compression suture	30 (68.2)	27
Uterine artery ligation + Cho's suture	2 (4.5)	-
Uterine artery ligation + B-Lynch suture	10 (22.7)	-
Uterine artery ligation + Hayman's suture	18 (40.9)	-
Balloon tamponade + uterine artery embolisation	10 (22.7)	10
Uterine artery ligation + uterine artery embolisation	2 (4.5)	2
B-Lynch suture + uterine artery embolisation	1 (2.3)	0
Hayman's + B-Lynch suture	1 (2.3)	1
Triple modalities	3 (1.4)	0 (0)
Uterine artery ligation + Hayman's suture + B-lynch suture	2 (66.7)	0
Balloon tamponade + uterine artery ligation + Hayman's suture	1 (33.3)	0

Table 2. Types of uterine-sparing treatment in the single, double, and triple modality groups

Table 3. Short-term complications in single and double modality groups

Complication	Single modality (n=174)*	Double modalities (n=44)*	p Value
Secondary postpartum haemorrhage	7 (4.0)	4 (9.1)	0.236
Endometritis	3 (1.7)	3 (6.8)	0.098
Puerperal sepsis	13 (7.5)	2 (4.5)	0.741
Pyometra	0 (0)	0 (0)	>0.99
Haematometra	0 (0)	1 (2.3)	0.202
Uterine necrosis	0 (0)	0 (0)	>0.99
Vessel complications	0 (0)	1 (2.3)	0.202

* Data are presented as No. (%) of cases

by our obstetricians since 2007. Two women with triple modalities underwent B-Lynch suture after Hayman's suture failed, with the old suture completely removed.

There is no consensus on the sequence of modalities of UST to achieve haemostasis. The use of double modalities is supported because the success rate is comparable to that with single modality, with no increase in complication rates. One study reported that 14 (93.3%) of 15 women had uneventful recovery after double modalities of UST, and the remaining woman had pyometra¹⁴. In addition, safety, fertility, and obstetric outcomes are reassuring following the combined use of embolisation and B-Lynch suture¹⁵. However, the use of triple modalities is a factor of poor prognosis; other factors include a delay in deciding on UST, a lack of decisional clinical algorithm, hypovolaemic shock, and the irregular supply of blood products¹⁶. We recommend that haemostatic hysterectomy should be resorted to after failing two modalities to avoid further blood loss and delay of performing hysterectomy resulting in disseminated intravascular coagulopathy, which makes haemostasis more difficult.

Our study is limited by the differences in the number of women who underwent different modalities of UST. Furthermore, other factors affecting the success rate of UST were not assessed, including the time interval from the diagnosis of PPH to the initiation of UST, the availability of skilled surgeons, and the rate of correction of disseminated intravascular coagulopathy. The optimal treatment option could not be inferred. Uterine curettage was reported to successfully drain the haematometra after the use of UAL, B-lynch suture, or square suture at 4 months postpartum without recurrences¹⁷. In the only patient with haematometra who presented with persistent spotting and pelvic pain at 6 weeks postpartum, the haematometra was completely drained under antibiotics cover by the uterine aspirator without anaesthesia. The long-term menstrual and fertility outcomes warrant further studies.

Conclusion

Single and double modalities of UST were effective and safe in treating primary PPH. Early resort to hysterectomy should be considered if double modalities of UST failed to achieve haemostasis.

Conflicts of interest

The authors have no conflicts of interest to disclose.

References

- Mousa HA, Walkinshaw S. Major postpartum haemorrhage. Curr Opin Obstet Gynecol 2001;13:595-603. Crossref
- 2. WHO Guidelines for the Management of Postpartum Haemorrhage and Retained Placenta. Geneva: World Health Organization; 2009.
- Doumouchtsis SK, Papageorghiou AT, Arulkumaran S. Systematic review of conservative management of postpartum hemorrhage: what to do when medical treatment fails. Obstet Gynecol Surv 2007;62:540-7. Crossref
- Doumouchtsis SK, Nikolopoulos K, Talaulikar V, Krishna A, Arulkumaran S. Menstrual and fertility outcomes following the surgical management of postpartum haemorrhage: a systematic review. BJOG 2014;121:382-8. Crossref
- Kaya B, Tuten A, Daglar K, et al. B-Lynch uterine compression sutures in the conservative surgical management of uterine atony. Arch Gynecol Obstet 2015;291:1005-14. Crossref
- Gottlieb AG, Pandipati S, Davis KM, Gibbs RS. Uterine necrosis: a complication of uterine compression sutures. Obstet Gynecol 2008;112:429-31. Crossref
- Joshi VM, Shrivastava M. Partial ischemic necrosis of the uterus following a uterine brace compression suture. BJOG 2004;111:279-80. Crossref
- Treloar EJ, Anderson RS, Andrews HS, Bailey JL. Uterine necrosis following B-Lynch suture for primary postpartum haemorrhage. BJOG 2006;113:486-8. Crossref
- Cottier JP, Fignon A, Tranquart F, Herbreteau D. Uterine necrosis after arterial embolization for postpartum hemorrhage. Obstet Gynecol 2002;100:1074-7. Crossref
- Benkirane S, Saadi H, Serji B, Mimouni A. Uterine necrosis following a combination of uterine compression sutures and

vascular ligation during a postpartum hemorrhage: a case report. Int J Surg Case Rep 2017;38:5-7. Crossref

- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin: Clinical Management Guidelines for Obstetrician-Gynecologists Number 76, October 2006: postpartum hemorrhage. Obstet Gynecol 2006;108:1039-47.
- Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36:296-327. Crossref
- Firmin M, Carles G, Mence B, Madhusudan N, Faurous E, Jolivet A. Postpartum hemorrhage: incidence, risk factors, and causes in Western French Guiana. J Gynecol Obstet Hum Reprod 2019;48:55-60. crossref
- 14. Sentilhes L, Gromez A, Razzouk K, Resch B, Verspyck E, Marpeau L. B-Lynch suture for massive persistent postpartum hemorrhage following stepwise uterine devascularization. Acta Obstet Gynecol Scand 2008;87:1020-6. Crossref
- Sentilhes L, Gromez A, Clavier E, Resch B, Verspyck E, Marpeau L. Fertility and pregnancy following pelvic arterial embolisation for postpartum haemorrhage. BJOG 2010;117:84-93. Crossref
- 16. Dohbit JS, Foumane P, Nkwabong E, et al. Uterus preserving surgery versus hysterectomy in the treatment of refractory postpartum haemorrhage in two tertiary maternity units in Cameroon: a cohort analysis of perioperative outcomes. BMC Pregnancy Childbirth 2017;17:158. Crossref
- Dadhwal V, Sumana G, Mittal S. Hematometra following uterine compression sutures. Int J Gynaecol Obstet 2007;99:255-6. Crossref